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In this paper, the sedimentation of a sphere and its radial migration in a Poiseuille flow
in a vertical tube filled with a Newtonian fluid are simulated with a finite-difference-
based distributed Lagrange multiplier (DLM) method. The flow features, the settling
velocities, the trajectories and the angular velocities of the spheres sedimenting in a
tube at different Reynolds numbers are presented. The results show that at relatively
low Reynolds numbers, the sphere approaches the tube axis monotonically, whereas
in a high-Reynolds-number regime where shedding of vortices takes place, the sphere
takes up a spiral trajectory that is closer to the tube wall than the tube axis. The
rotation motion and the lateral motion of the sphere are highly correlated through
the Magnus effect, which is verified to be an important (but not the only) driving
force for the lateral migration of the sphere at relatively high Reynolds numbers. The
standard vortex structures in the wake of a sphere, for Reynolds number higher than
400, are composed of a loop mainly located in a plane perpendicular to the streamwise
direction and two streamwise vortex pairs. When moving downstream, the legs of the
hairpin vortex retract and at the same time a streamwise vortex pair with rotation
opposite to that of the legs forms between the loops. For Reynolds number around 400,
the wake structures shed during the impact of the sphere on the wall typically form into
streamwise vortex structures or else into hairpin vortices when the sphere spirals down.
The radial, angular and axial velocities of both neutrally buoyant and non-neutrally
buoyant spheres in a circular Poiseuille flow are reported. The results are in remarkably
good agreement with the available experimental data. It is shown that suppresion of
the sphere rotation produces significant large additional lift forces pointing towards
the tube axis on the spheres in the neutrally buoyant and more-dense-downflow cases,
whereas it has a negligible effect on the migration of the more dense sphere in upflow.

1. Introduction
Dynamic simulation of the motion of particles in a suspension is capable of provid-

ing both microscopic and macroscopic information on the suspension and con-
sequently has become an important investigative tool for multiphase flow problems.
A variety of methods have been developed over last two decades such as Stokesian
Dynamics simulation (e.g. Brady & Bossis 1988), boundary-fitted-mesh-based direct
numerical methods including the boundary element method (e.g. Phan-Thien, Tran-
Cong & Graham 1991), the finite element method (e.g. Hu 1996; Johnson & Tezduyar
1997), the lattice-Boltzmann method (e.g. Aidun, Lu & Ding 1998), and the distributed
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Lagrange multiplier-based fictitious domain method (referred to as the DLM method
below). The last three can deal with the fluid inertial effect through the solution of
the flow fields with the Navier–Stokes or lattice-Boltzmann equation, and are often
referred to as direct numerical simulation methods (Hu, Joseph & Crochet 1992;
Joseph 2003).

The DLM method was developed and first applied to particulate flow problems
by Glowinski et al. (1997), and its detailed description can be found in Glowinski
et al. (1999), Glowinski et al. (2001), and Glowinski (2003). The key features of the
DLM method include a combined weak formulation for the fluid–particle system in
which the mutual forces cancel (an explicit calculation of the hydrodynamic forces
and torques on particles is not required, a fixed mesh is used for the computation of
the flow field inside as well as outside the particles), remeshing due to the motion of
particles is not required, and an operator-splitting technique for time discretization,
resulting in a highly efficient and robust algorithm. With the DLM method, Pan,
Joseph & Glowinski (2001) numerically simulated the sedimentation of 6400 circular
particles in a two-dimensional cavity in the Rayleigh–Taylor instability, and Pan
et al. (2002) investigated the fluidization of a bed of 1024 spherical particles; the results
were in good agreement with experiments. Singh, Hesla & Joseph (2003) developed
a collision strategy for the DLM method in which a slight overlap between particles
is allowed. Yu et al. (2002a) substituted the so-called ‘Q1 − P0’ finite element method
for the ‘twice-coarser’ pressure element based one and the accuracy in predicting the
lateral motion of particles was significantly improved due to the former’s symmetric
property. The migration of a circular particle in a channel or a plane Poiseuille
flow (Yu et al. 2002a) and many particles moving in a circular Couette device (Yu,
Tanner & Phan-Thien 2002b) were correctly produced with the Q1 − P0 method. The
price for the enhanced accuracy is a higher cost and presumably less stability.

In this article, we present a new scheme obtained by replacing the finite element
method with the half-staggered finite difference method for solving the fluid-flow
problem. Compared to the Q1 − P0 finite element method, the new scheme has the
same level of accuracy but is more efficient and robust particularly in the case of
high Reynolds numbers. We then use the new scheme to simulate the motion of a
sphere through a vertical tube filled with a Newtonian fluid at moderate and high
Reynolds numbers. Two problems are investigated: the sphere sedimentation and its
radial migration in Poiseuille flow. We focus on the motion characteristics and the
wake structures at different Reynolds numbers for the former, and the effects of the
relevant parameters on the migration rate for the latter. The main drawback of
the DLM method is its relatively poor temporal and spatial convergence rates due to
the operator-splitting technique and the discontinuity of velocity gradient on the par-
ticle boundary, as demonstrated by Yu et al. (2002a). Further, homogeneous meshes
are often adopted in the DLM method, irrespective of the number of particles. We will
put emphasis on a comparison between our results and available experimental data in
an attempt to verify the DLM method as a reliable method for the direct numerical
simulation of particulate flows, in particular at moderate Reynolds numbers.
Glowinski et al. (2001) and Yu et al. (2002a) have shown that the DLM method is cap-
able of predicting the settling velocity of a particle with reasonable accuracy, whereas
the present work shows for the first time that the DLM method can also predict the ro-
tation and the lateral migration of a particle in a shear flow with reasonable accuracy.

Feng, Hu & Joseph (1994a) and Yu et al. (2002a) investigated the motion of
a circular particle sedimenting in a vertical channel of width 4D, D being the
particle diameter. Both groups observed that the particle monotonically approached
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the centreline in a Reynolds number range corresponding to the unseparated flow
regime for the flow past a fixed cylinder. The particle approached the centreline
with an overshoot in a Reynolds number range corresponding to the steady and
symmetric wake regime. In addition, the results of Yu et al. (2002a) showed that the
particle migrated towards the centreline with rocking motion and eventually oscillated
around the centreline with a fixed amplitude when the vortices were shed alternately
from the sides of the particle and formed into Kármán vortex street. Since the wake
structure of a sphere is different from that of a cylinder, one may wonder what
kind of trajectory a sphere sedimenting in a tube at different Reynolds numbers will
follow. The theory and experiments of Vasseur & Cox (1977) showed that a sphere
settling in a vertical channel monotonically migrated towards the centreplane at a low
(but not zero) Reynolds number. Previously reported works on dynamic simulation
of the sedimentation of spheres in a vertical tube include Pan (1999) and Johnson
& Tezduyar (1996, 1997); however, the analysis of a single sphere sedimenting at
different Reynolds numbers has not been attempted. In the present paper, we will
present the flow features, the settling velocities, the trajectories and the angular
velocities of spheres sedimenting in a tube at different Reynolds numbers.

Particle migration in a Poiseuille flow is another important subject that has attracted
much interest since Segré & Silberberg (1961, 1962) observed that a neutrally buoyant
sphere migrated to a stable equilibrium position about 0.6 tube radius from the axis.
The Segré–Silberberg effect was subsequently confirmed and investigated by others
(e.g. Oliver 1962; Jeffrey & Pearson 1965; Karnis, Goldsmith & Mason 1966). When
a particle is not neutrally buoyant, it was found that a lagging particle (e.g. a heavier
particle in an upward moving fluid) migrates towards the tube axis, while a leading
particle (e.g. a lighter particle in an upward moving fluid) migrates towards the tube
wall (e.g. Jeffrey & Pearson 1965; Karnis et al. 1966; Denson, Christiansen & Salt
1966). The perturbation method has been widely employed to examine the inertia-
induced lift force responsible for particle migration in a shear flow (e.g. Rubinow &
Keller 1961; Saffman 1965; Cox & Brenner 1968; Ho & Leal 1974; Vasseur & Cox
1976; Schonberg & Hinch 1989; McLaughlin 1993; Hogg 1994; Asmolov 1999),
and these works have successfully predicted the two-way migration in the neutrally
buoyant case and the one-way migration in the non-neutrally buoyant case. Brenner
(1966), Cox & Mason (1971) and Leal (1980) presented comprehensive reviews of
experimental and theoretical works on particle migration. Dandy & Dwyer (1990),
Cherukat, McLaughlin & Dandy (1999), and Kurose & Komori (1999) calculated
numerically the lift force on a sphere fixed or rotating in a linear shear flow for a
wide range of Reynolds numbers. To investigate the lateral migration of a freely
moving particle, however, one has to resort to the dynamic simulation methods. Some
studies on dynamical simulation of particle migration in a plane Poiseuille flow have
been reported (e.g. Nott & Brady 1994; Feng, Hu & Joseph 1994b; Huang et al.
1997; Choi & Joseph 2001; Patankar et al. 2001b; Joseph & Ocando 2001); in the
present work, we attempt to systematically examine the radial migration of a sphere
in a circular Poiseuille flow for the first time.

The arrangement of the paper is as follows. In § 2, the new computational scheme is
described and a dimensional analysis of the flow parameters is carried out for the sedi-
mentation and Poiseuille flow cases. In § 3, we first present the results for the
sedimentation of a sphere at different Reynolds numbers, and the structure of the
hairpin vortex is discussed. Then the radial velocity, the angular velocity and the axial
velocity of a sphere in Poiseuille flow are presented for both neutrally buoyant and
non-neutrally buoyant cases. Conclusions are given in § 4.
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2. Numerical model
Consider a particle with density ρd moving in a Newtonian fluid of density ρf and

viscosity η. By introducing the scales Lc for length, Uc for velocity, Lc/Uc for time,
ρf U 2

c for pressure and ρf U 2
c /Lc for distributed Lagrange multiplier, ρdL

3
c for mass

and ρdL
5
c for moment of inertia, the dimensionless weak formulation of the governing

equations in the case of Dirichlet boundary conditions is stated as follows:
For t > 0, find u ∈ WuΓ , p ∈ L2

0(Ω), λ∈ Λ(t), U ∈ R3, and Ω ∈ R3 satisfying
(a) the combined momentum equation∫

Ω

(
∂u
∂t

+ u · ∇u
)

· v dx −
∫

Ω

p∇ · v dx +
1

Re

∫
Ω

(∇u)T : ∇v dx

+ (ρr − 1)

[
M

(
dU
dt

− Fr
g
g

)
· V + J

dΩ

dt
· ξ

]
− F′ · V

= 〈λ, v − (V + ξ × r)〉P (t), for all v ∈ W0(t), V ∈ R3, ξ ∈ R3; (2.1)

(b) the incompressibility constraint∫
Ω

q∇ · u dx = 0, for all q ∈ L2(Ω); (2.2)

(c) and the rigid-body motion constraint

〈µ, u − (U + Ω × r)〉P (t) = 0, for all µ ∈ Λ(t). (2.3)

Here, u, p, U, Ω and λ are the fluid velocity, the pressure, the particle translational
and angular velocities, and the distributed Lagrange multiplier, respectively, and
v, q, V , ξ and µ are their corresponding variances. M and J are the mass and the
moment of inertia of the particle, respectively. Here, r is the position vector with
respect to the centre of the particle, F′ is the repelling force from the neighbouring
particles (if required) or from the solid wall preventing the particle from penetrating
other particles or the wall, and g is the acceleration due to gravity. There are
three parameters: particle to fluid density ratio ρr = ρd/ρf , the Reynolds number
Re= ρf UcLc/η and the Froude number Fr = gLc/U 2

c . Here the Froude number
represents the relative importance of gravity and inertia.

The following solution or variance spaces are used:

WuΓ = {v ∈ H 1(Ω)3 | v = uΓ (t) on Γ },
W0 = {v ∈ H 1(Ω)3 | v = 0 on Γ },

L2
0 =

{
q ∈ L2(Ω)

∣∣∣∣
∫

Ω

q dx = 0

}
,




(2.4)

and Λ(t) is an appropriate space by which the constraint of rigid-body motion in P (t)
is enforced; 〈, 〉 is an inner product defined in Λ(t). P (t) signifies the region inside
and including the particle boundary, Ω the entire computational domain including
both the interior and exterior of the particle, and Γ the boundary of Ω .

Although the formulations above involve only one particle and Newtonian fluids,
the extension to the many-particle case or the viscoelasticity case is straightforward.

2.1. Computational scheme

The operator-splitting technique was proposed by Glowinski et al. (1999) to decom-
pose the system (2.1)–(2.3) into sub-systems. The essential step is to divide the original
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fluid/solid system into a fluid-flow part and a particle-motion part in the following
forms:

(a) Fluid-flow part: find u# ∈ WuΓ , p ∈ L2
0(Ω), satisfying

∫
Ω

(
u# − un

�t
+ u · ∇u

)
· v dx −

∫
Ω

p∇ · v dx +
1

Re

∫
Ω

(∇u)T : ∇v dx = 0,

for all v ∈ W0(t), (2.5)

∫
Ω

q∇ · u# dx = 0, for all q ∈ L2
h. (2.6)

(b) Particle-motion part: find un+1 ∈ WuΓ , λ ∈ Λ(t), Un+1 ∈ R3, and Ωn+1 ∈ R3 satis-
fying

∫
Ω

(
un+1 − u#

�t

)
·v dx +(ρr −1)

[
M

(
Un+1 −Un

�t
−Fr

g
g

)
· V +J

Ωn+1 −Ωn

�t
·ξ

]
− F′ · V

= 〈λ, v − (V + ξ × r)〉P (t), for all v ∈ W0(t), V ∈ R3, ξ ∈ R3, (2.7)

〈µ, un+1 − (Un+1 + Ωn+1 × r)〉P (t) = 0, for all µ ∈ Λ(t). (2.8)

This splitting results in substantial simplification of the algorithm and improvement
in the efficiency and robustness. On the other hand, it is a significant source of
computational errors. Particularly in the case of low Reynolds numbers where viscous
diffusion dominates the flow, a very small time step is needed for acceptable accuracy
(Yu et al. 2002a). Our recent numerical experiments show that this difficulty can be
alleviated by keeping the multiplier term at the previous time step in the fluid-flow
problem (2.5) and replacing the Lagrange-multiplier with the multiplier difference in
the particle-motion problem (2.7).

Equations (2.5)–(2.6) represent the weak formulation of the Navier–Stokes and
continuity equations

∂u
∂t

+ u · ∇u = −∇p+
1

Re
∇2u,

∇ · u = 0.


 (2.9)

We suggest solving equations (2.9) using a finite difference scheme as an approximation
solution to the fluid-flow problem, instead of solving equations (2.5)–(2.6) directly with
the finite element method. Generally speaking, the finite difference method is better
suited to problems posed in a regular domain than the finite element method. The
widely used projection method is employed here, which is stated as follows:

u∗ − un

�t
+ (u · ∇u)n =

1

Re
∇2u∗,

u∗ = uΓ on Γ ;


 (2.10)

∇2p =
∇ · u∗

�t
,

∂p

∂n
= 0 on Γ ;


 (2.11)

u# − u∗

�t
= −∇p. (2.12)
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Equation (2.10) is an advection–diffusion problem and can be further decomposed
into three diagonal systems with the ADI technique. We adopt the following version:

uk+1/3 − uk

�t/3
+ (u · ∇u)k =

1

Re

(
∇2

xuk+1/3 + ∇2
yuk + ∇2

zuk
)
,

uk+2/3 − uk+1/3

�t/3
+ (u · ∇u)k+1/3 =

1

Re

(
∇2

xuk+1/3 + ∇2
yuk+2/3 + ∇2

zuk+1/3
)
,

uk+1 − uk+2/3

�t/3
+ (u · ∇u)k+2/3 =

1

Re

(
∇2

xuk+2/3 + ∇2
yuk+2/3 + ∇2

zuk+1
)
,




(2.13)

in which we set uk = un and u∗ = uk+1.

A half-staggered finite difference scheme is employed to discretize equations (2.10)–
(2.12) in space where the nodes of all velocity components are co-located and the
pressure nodes are staggered with the velocity nodes. All derivative terms are discret-
ized with the central difference scheme. The resulting spatial scheme is exactly the
same as obtained from the Q1 − P0 finite element method used by Yu et al. (2002a)
where the trapezoidal rule is employed for the elemental integration. However,
the finite element method involves Uzawa iteration at every time step and the
computational cost per iteration is comparable to that per time step for the current
method. Hence, it is clear that the current method is much more efficient, and
furthermore we found it more robust for solving high-Reynolds-number flows, while
the two methods were observed to produce almost same results. A completely
staggered mesh is usually used in association with the projection method, and the
incorporation of it into the DLM method is a subject of further study.

Equation (2.11) is an elliptic problem with a homogeneous Neumann boundary
condition and can be efficiently solved by using a combination of FFT and a tri-
diagonal system solver (Yu et al. 2002a).

The reader is referred to Glowinski et al. (1999, 2001), Pan & Glowinski (2002) and
Yu et al. (2002a) for the numerical method to solve the particle-motion problem
(2.7)–(2.8). In particular, Pan & Glowinski (2002) solved the difficulty arising from
the singularity of the neutrally buoyant case in the DLM formulation (2.1), which
however does not exist in another version of the DLM formulation (Patankar et al.
2000). An analytical solution to equations (2.7)–(2.8) was derived by Glowinski et al.
(2001) with an approximation that the velocity field outside the particle boundary
remains unchanged for this sub-problem, and the difficulty in the neutrally buoyant
case is also circumvented. However, they reported that the solution obtained with
the collocation point method is of better quality. In this study the collocation point
(CP) method is used for the sedimentation case and the collocation element (CE)
method for the Poiseuille flow. The CE method was proposed by Yu et al. (2002a)
and was found to give a smoother solution (but not necessarily more accurate) than
that obtained with the CP method. The control points for the CP method are located
in a sequence of parallel planes that are evenly distributed inside the sphere and their
distribution in each plane has the same pattern as reported by Yu et al. (2002a). For
the CE method, we generate evenly distributed points in a cube covering the sphere,
leave out those outside the sphere, and enforce the constraint of rigid-body motion
using the weighted-average values of the velocities at each remaining point and its
surrounding six points aligned with the axis directions. The mesh sizes (distance
between neighbouring control points) for both the CE and CP methods are slightly
coarser than the velocity mesh size. Another set of Lagrange multipliers is introduced
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to impose the boundary condition at the tube wall with the CE method, as the
computation of flow fields is performed in a quadrant.

2.2. Analysis of dimensionless governing parameters

2.2.1. Sedimentation case

Now consider the problem of a sphere sedimenting in an infinitely long vertical tube
filled with a Newtonian fluid. Once the initial conditions of the fluid and the particle
are given, the flow is uniquely determined by the parameters (ρf , ρd, η, g, a, R), which
denote the fluid density, the particle density, the fluid viscosity, the gravitational
acceleration, the radius of the sphere and the radius of the tube, respectively. There
are six dimensional parameters, thus, three dimensionless parameters are required,
which can be (ρr, Re, λa), where λa = a/R. Following the ideas of Yu et al.
(2002a), let the diameter of the sphere 2a be the characteristic length Lc and choose the
characteristic velocity Uc close to the terminal setting velocity by reasonably combin-
ing the dimensional parameters. For the case of strong inertial effect, we define Uc by

Uc =

√
8a

3
|ρr − 1|g (2.14)

so that

CD =
4
3
πa3|ρd − ρf |g

1
2
πa2ρf U 2

T

=
U 2

c

U 2
T

=
1

(U ∗
T )2

, (2.15)

and

ND =
4ρ2

f |ρd − ρf |g(2a)3

3η2
= Re2, (2.16)

where UT and U ∗
T are the dimensional and dimensionless terminal sedimenting velocity,

respectively, CD is the drag coefficient, and ND is sometimes called the ‘Best number’
(Clift, Grace & Weber 1978). The terminal velocity can be more conveniently obtained
from the relationship between ReT and ND than between CD and ReT since ND is
independent of the terminal velocity, whereas the other two are not. The Froude
number becomes

Fr =
3

4|ρr − 1| . (2.17)

The Reynolds number ReT , which is based on the terminal settling velocity, can
be calculated from

ReT = U ∗
T Re. (2.18)

In this study, ReT is also used to represent the Reynolds number based on the main-
stream velocity in experiments or static simulations.

2.2.2. Poiseuille flow case

For the case of spherical particles moving in a Poiseuille flow, we add the initial
maximum velocity at the centreline Um into the parameter group and an additional
dimensionless parameter λf is accordingly defined by

λf =
Uf

Um

, (2.19)

where Uf is the Stokes free-fall velocity of a sphere, i.e.

Uf = 4a2|ρd − ρf |g/18η. (2.20)
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Um and R are taken as the characteristic velocity and length, respectively. The
corresponding Reynolds number is the so-called tube Reynolds number and we
denote it by Ret . The Froude number has the form

Fr =
9λf

2|ρr − 1|λ2
aRet

. (2.21)

Some other commonly used Reynolds numbers can be expressed in terms of Ret , λa

and λf , such as

shear Reynolds number Res =
ρf Um(2a)2

Rη
= 4λ2

aRet , (2.22)

free-fall Reynolds number Ref =
ρf Uf a

η
= λaλf Ret , (2.23)

slip Reynolds number Reslip =
ρf |U s |(2a)

η
= 2

|U s |
Um

λaRet . (2.24)

In equation (2.24), the slip velocity U s was found to have the following form in a
Poiseuille flow (Brenner 1966)

U s =

{
±Uf

[
1 − f (r)

a

R

]
− 2

3

(
a

R

)2

Um

}
ez (2.25)

where f (r) denotes a function of radial position and ez is the flow direction. The
choice of the positive or negative sign for the first term on the right-hand side of
(2.25) depends on whether the sphere leads or lags the fluid, In addition, one can find
the following relationships for the sedimentation case and the Poiseuille flow case:

Re = 4
√

3Ref ,

UT

Um

= 2
√

3U ∗
T

λf√
Ref

.


 (2.26)

In equation (2.26), U ∗
T can be obtained from the figure plotting ReT versus N

1/3
D given

by Clift et al. (1978). The above equations are useful to estimate the real dimensionless
slip velocity of the sphere in Poiseuille flow subjected to the effects of the wall and
inertia.

Apart from the parameter group (Ret , λa, λf , ρr ), the pressure gradient is needed
for uniquely determining the motion of the particles in the case of pressure-driven
flows. Two approaches to deal with the pressure gradient can be considered: one is
to keep the pressure gradient unchanged with time, as employed by Choi & Joseph
(2001) and Huang & Joseph (2000), and the other is to keep the flow flux invariant,
from which the pressure gradient can be determined. The choice should agree with
the experimental conditions to be compared. Note that there are five dimensionless
control parameters including the pressure gradient for the former and four for the
latter (Um is usually taken as twice the mean velocity if the velocity profile deviates
from a parabolic distribution). Nevertheless, if one is only interested in the results at
the steady state (if exists) and defines Ret and λf by using the steady flow flux, then
the constant pressure gradient given for the latter can be excluded from the control
parameter group since the relationship between the pressure gradient and the flow
flux at the steady state is unique.

Maintaining the pressure gradient invariant is the approach used in this study for
simplicity, and the pressure gradient is set to be (−4/Ret ), the value required for
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just sustaining the steady circular Poiseuille flow of Newtonian fluids. Only a single
neutrally buoyant or slightly denser particle is involved here and its effect on the
flow flux is small; therefore, the tube Reynolds number is expected to change only
slightly during the simulations and we will adopt the initial tube Reynolds number
for analysing flows.

For a sphere, the dimensionless mass M and moment of inertia J are 4
3
π(a∗)3 and

2
5
(a∗)2M, respectively. Here, a∗ represents the dimensionless sphere radius, being 1/2

for the sedimentation case and λa for the Poiseuille flow case.
For both problems studied here, the sphere will travel a long distance along the

streamwise direction. In order to save computational costs, we introduce a periodic
boundary condition for the Poiseuille flow case and the periods used range from 8D
to 11D, D being the sphere diameter. For the sedimentation case, we let the com-
putational domain move with the sphere, and the method is simply this: once the
sphere falls below than a designated position z′, the computational domain is moved
downwards one mesh distance so that the streamwise motion of the sphere in the
frame of the computational domain is largely restricted within a mesh above z′. For
simplicity, the velocities on the downstream boundary are kept unchanged till the
next update of the computation domain. This method was also used by Yu et al.
(2002a) to simulate the sedimentation of a circular particle in a vertical channel. The
computational tube lengths range from 15D to 25D, for varying Reynolds numbers,
and the designated position is located 4D from the upstream boundary.

Throughout this study, the time step is set to be 0.01 and one sphere diameter
covers 11.52–16 spatial meshes for various cases. The results of a convergence test
for the Poiseuille flow case will be presented.

3. Results and discussion
3.1. Sedimentation of a sphere

A Cartesian coordinate system shown in figure 1(a) is used for computation and
description of the motion of spheres. Gravity is directed along the negative z-axis.

3.1.1. Motion behaviours at different Reynolds numbers

We now analyse the motion of spheres falling in a tube of λa = 0.2 at Re = 20, 100,
200, 300 and 400, respectively. For each case, the sphere is released from (x0, y0) =
(−1.25, 0) and ρr is set to 1.5. The role of ρr will be discussed in the Poiseuille flow
case. The flow field, settling velocities, trajectories and angular velocities of the spheres
are shown in figures 1–4, respectively.

Numerous experiments and computations (e.g. Magarvey & Bishop 1961; Natarajan
& Acrivos 1993; Johnson & Patel 1999; Tomboulides & Orszag 2000) showed that
there are four flow regimes for the flow past a sphere at moderate Reynolds numbers:
unseparated flow (ReT < 20), a steady and axisymmetric wake (20< ReT < 210), a
non-axisymmetric wake (210 < ReT < 270) and shedding of vortices (ReT > 270). As
can be seen from figure 3(a), steady terminal settling velocities at Re= 200 and higher
cannot be obtained from our simulations, thus, more conveniently, we take a settling
Reynolds number Remax that is based on the maximum velocity observed during the
simulation as a characteristic Reynolds number for each case. The values of Remax

are 7.94, 83.8, 197, 306 and 424, corresponding to Re = 20, 100, 200, 300 and 400,
respectively. Therefore, Re = 20 corresponds to Regime A, 100 and 200 to Regime B,
and 300 and 400 to Regime D, respectively.
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(a) Re = 20

x

y
z

(b) Re = 100 (c) Re = 200 (d) Re = 300 (e) Re = 400

Figure 1. Contours of ωy and velocity fields at different Reynolds numbers in the (x, z)
planes. (a) t =30; (b) t = 30; (c) t = 40; (d) t = 50 and (e) t = 30. λa = 0.2; (x0, y0) = (−1.25, 0).

Typical flow features for the sedimentation of the spheres at different Reynolds
numbers are presented in figure 1. In the cases of Re = 20 and Re =100, non-axisym-
metric vortex structures are observed when the spheres migrate towards the tube axis,
and they become axisymmetric when the spheres reach the tube axis. At Re= 200,
the circulation zone behind the sphere is very long and the wake is highly non-
axisymmetric. Consistent with experimental observations of Achenbach (1974), as Re
increases up to 400, the vortex sheets behind the sphere roll up strongly due to the
Kelvin–Helmholtz instability, and are shed, forming hairpin vortices. At Re= 300,
shedding of vortices can be observed, but the strong rollup of vortex sheets never
takes place and the vortex structures in the wake are not organized as regularly as at
Re= 400. Shedding of vortices without rollup was also reported by Johnson & Patel
(1999) for the flow past a fixed sphere at ReT =300.

Figure 2 shows that the sphere at both Re = 20 and 100 monotonically approaches
the tube axis and takes the tube axis as its equilibrium position. The sphere at
Re= 200 moves pass the tube axis until reaching a position about halfway between
the tube wall and the tube axis. It then moves back and oscillates around the tube
axis from the (x, z)-plane view during our simulation time. The motion of the sphere
in the (x, z)-plane is unstable and the sphere is observed to move out of this plane.
The subsequent trajectory of the sphere may be taken in a qualitative sense only,
since the departure of the sphere from the symmetric plane is caused by randomly
generated numerical disturbances and even the deviation direction is not controlled.
For convenience, we refer to the stage when the sphere moves in the (x, z)-plane as
Stage One and the subsequent stage out of the (x, z)-plane as Stage Two. The sphere
behaviour at Re = 300 is similar to that at Re= 200 and the main difference is that for
the former the sphere can approach the wall much closer. From an (x, y)-plane view,
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Figure 2. Trajectories of spheres at different Reynolds numbers: (a) (x, z)-plane view;
(b) (x, y)-plane view. λa =0.2; (x0, y0) = (−1.25, 0).

the sphere at Re= 300 moves along a curve, not a straight line from one side to another
at Stage Two, and it is interesting that the curvature increases rapidly when the sphere
approaches close to the wall, unlike the case of elastic collision. The (x, y)-trajectory
of the sphere at Re= 400 is almost parallel to the tube wall at Stage Two and we do
not know whether it will eventually become concentric with the tube wall. The sphere
at Re =300 never touches the wall in our simulation. However, at Re= 400, our code
fails to run when the sphere moves back into the (x, z)-plane and approaches the wall
very closely, hence a repulsive force (Glowinski et al. 1999) is invoked when the dis-
tance between the sphere surface and the wall is smaller than the mesh size, which is
the only case in this study where special treatment is required. We suspect that the
hydrodynamic repulsive force, or lubrication force, is capable of preventing a collision
between the sphere and the wall, and the dubious sudden jump in the rotation at
time around 74 for the case of Re = 400 in figure 4 can be removed, provided the
mesh is fine enough. However, we did not attempt to do this because we adopt
a homogeneous mesh and the computational cost of enhancing the resolution would
be prohibitively high. We are mainly interested the qualitative behaviour of the sphere
there. In practice, it is not possible for any direct numerical simulation methods to
produce an accurate lubrication force when two bodies approach very closely.

Figure 3(a) shows the time developments of the settling velocities at the different
Reynolds numbers and figure 3(b) shows comparisons between Remax and experi-
mental ReT obtained for spheres fixed on the tube axis (Clift et al. 1978). The settling
velocity increases rapidly at initial times for all cases. Subsequently, for Re = 20, the
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Figure 3. (a) Time development of settling velocities at different Reynolds numbers and
(b) settling Reynolds numbers based on the maximum settling velocities observed during
the simulations, with comparison to the experimentally obtained terminal settling Reynolds
numbers for a sphere on the tube axis (Clift et al. 1978). λa = 0.2; (x0, y0) = (−1.25, 0).

settling velocity basically remains unchanged during the sphere migration towards
the tube axis and for Re = 100, the settling velocity increases very slightly. For the
other cases, the settling velocity oscillates due to the effects of the wall. As a rule, the
velocity increases as the sphere moves closer to the tube axis and decreases as
the sphere moves closer to the wall. For Re = 300 and 400, the reduction in the
magnitude of the velocity is significant when the sphere approaches the wall closely.
Remax for Re = 20 and 100 is basically equivalent to ReT and a good agreement with
the experimental data is found, as illustrated in figure 3(b). A pronounced disparity
between Remax and experimental ReT is observed for Re = 200, 300 and 400, and
the lateral and rotating motion of the sphere when it reaches the tube axis in the
simulation is partly responsible for this disparity. Although Yu et al. (2002a) observed
that, for the case of relatively high Reynolds number, the DLM method can predict
roughly the same settling velocities of a circular particle as those obtained with the
finite element method (Feng et al. 1994a), it appears to gives systematically smaller
settling velocities of a sphere compared to the experiments. The reason is unclear;
however, it is possible that the numerical error is increased as Re increases. If this is
true, there are two remedies: one is to simply take a hydrodynamic radius (obtained
from numerical results) rather than the physical radius as the computational size of
the sphere, which is widely used in the lattice-Boltzmann method (e.g. Nguyen & Ladd
2002); and the other is to adopt more sophisticated spatial and time discretization
schemes for higher accuracy.

It was observed that a circular particle settling a vertical channel rotates in an
anomalous way, i.e. as if rolling up the nearby wall, when it migrates towards the
channel centreline (Feng et al. 1994a; Yu et al. 2002a). Not surprisingly, the spheres
behave in a similar way at Re = 20 and Re= 100. For Re =200 or higher and at
Stage One, the sphere retains its previous rotation direction while passing through the
tube axis till it begins to move back to start the next cycle (figure 4). The difference
between the case of Re= 200 and the case of Re =300 or 400 is that the magnitude
of the angular velocity for the latter keeps increasing until the sphere approaches the
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Figure 4. Angular velocities versus streamwise positions at Re= 200, 300 and 400. λa =0.2;
(x0, y0) = (−1.25, 0).

wall closely and consequently it changes violently in the vicinity of the wall, whereas
the angular velocity for the former changes much more smoothly at the times of
cycle shift. With the spheres moving out of the (x, z)-plane, the other two components
of the angular velocity become significant. The streamwise component Ωz and the
modulus of the angular velocity |Ω | for Re= 400 are depicted in figure 4 and we can
see that at Stage Two |Ω | does not change much with time and is almost one order
of magnitudes greater than Ωz. The sign of Ωz does not change with time; the sphere
maintains the direction of its streamwise rotation while spiralling down in the tube.

It is interesting to find that the rotation motion and the lateral motion of the sphere
are highly correlated through the Magnus effect. Based on the potential flow theory,
the Magnus force on a moving and rotating body has the form

F = ρf Γ × U (3.1)

in which Γ and U are the circulation and translational velocities of the body with
respect to the fluid, respectively. In the current problem, we take U as the settling
velocity directed downward. From the (x, y)-plane view, the angular velocity vector
is always directed toward the right-hand side of the (x, y)-trajectory for each case
and any time, as indicated in figure 4 and figure 2. Clearly, the resulting Magnus
force has the same direction as the lateral motion of the sphere (figure 2). Therefore,
the Magnus force appears to be a primary driving forces for the lateral motion of
the sphere. Nevertheless, the theoretical analyses (Vasseur & Cox 1976, 1977) showed
that the migration rate of a sphere is independent of its rotation at small λa and Re,
indicating that in this case the Magnus effect is not relevant to the lateral motion
of the sphere. In order to examine the effect of the Magnus force on the sphere
migration at moderate λa and Re, we conducted simulations where rotation motion
of the sphere is not allowed and compare the results to the free-rotation cases at
the same Reynolds numbers in figure 5. We see that the suppression of the rotation
does not eliminate the lateral migration of the spheres, but reduces the migration
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Figure 5. Comparison of the trajectories of spheres between the cases of free rotation and
no rotation: (a) (x, z)-plane view; (b) (x, y)-plane view. λa =0.2; (x0, y0) = (−1.25, 0).

rate and the migration distance significantly for both Re = 200 and Re =400. For the
case of Re= 200, the sphere with no rotation approaches the tube axis monotonically
and stays there, oscillating with a very small amplitude. Its terminal settling velocity
is around unity, only slightly larger than that in the free-rotation case, indicating
that the rotation and lateral motions of the sphere do not significantly affect the
streamwise drag.

The main differences between a circular particle settling in channel (Yu et al. 2002a)
and a sphere settling in a tube are:

(a) in the steady symmetric wake ReT regime, the circular particle approaches the
channel centreline with an overshoot, whereas the sphere may approach the tube axis
monotonically;

(b) shedding of vortices from alternate sides of the circular particle gives rise to a
rocking motion for the particle, whereas no obvious effects of vortex shedding on the
motion of the sphere in a tube are observed;

(c) at high Re, the circular particle eventually oscillates around the channel
centreline with a small and fixed amplitude, whereas the sphere takes up a spiral
trajectory that is closer to the tube wall than the tube axis.

These differences are not surprising, since the motion of the fluids is restricted in a
plane for the former, whereas the fluids can move around the sphere in a three-
dimensional space for the latter.



Dynamic simulation of sphere motion in a vertical tube 75
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Figure 6. Streaks associated with shedding of hairpin vortices from a sphere: (a) experimental
streaks from Sakamoto & Haniu (1990) for a fixed sphere; (b) our computational streaks for
a sphere settling freely in a tube at Re= 500, λa = 0.125 and t = 35.

3.1.2. Hairpin vortex

The experiments of Achenbach (1974), Sakamoto & Haniu (1990, 1995) and
Johnson & Patel (1999) showed that, for 300 < ReT < 420, the vortices are all shed
with the same orientation, resulting in a ladder-like chain of overlapping hairpin-
shaped structures (see figure 6a). For ReT > 420, the vortices are shed as if the
planes including them are rotating slowly and irregularly about the streamwise sphere
axis. The hairpin vortices exist in the flow at Reynolds number up to the order of
thousands (Achenbach 1974; Sakamoto & Haniu 1990). The vortex structures in the
wake of a fixed sphere have been analysed numerically by Johnson & Patel (1999),
Tomboulides & Orszag (2000) and Ploumhans et al. (2002). We now examine the
vortex structures in our flows. A number of criteria for the identification of vortices
have been proposed, among which the regions of complex eigenvalues of the velocity
gradient tensor (Chong, Perry & Cantwell 1990), the Hessian of pressure (Jeong &
Hussain 1995) and the imaginary part of complex eigenvalue of the velocity gradient
tensor (Zhou et al. 1999) have been proved successful. Following Zhou et al. (1999),
we use the iso-surface of λ2

ci to visualize the vortex structure, λci being the imaginary
part of the complex eigenvalue of the velocity gradient tensor.

In order to compare our results with experiments and other computations where
the wall effect was not relevant, we consider a new case of λa = 0.125. The initial
lateral position of the sphere is (x0, y0) = (−2, 0) and Re is set to 500. Remax of 575
is observed during the simulation. The particle tracers, the iso-surface of λ2

ci and
the iso-surface of the streamwise vorticity at t = 35 are shown in figures 6, 7 and 8,
respectively. From figures 7 and 8, the vortex structures are composed of a vortex loop
located mainly in a plane perpendicular to the streamwise direction and two pairs
of streamwise vortices. One pair of the streamwise vortices extends from the centre
of the loop and the other is located between consecutive loops. The two pairs have
opposite rotation directions. Clearly, the latter are responsible for the bending and
kinking of the streaks between the loops in figure 6. Our streamwise vortex structures
agree well with those obtained by Tomboulides & Orszag (2000) for ReT = 500. From
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figure 8, the distance between two consecutive loops is about 5.5 and this means that
the Strouhal number is about 0.18, in good agreement with the experimental data of
Sakamoto & Haniu (1990).

From our video of the vortex structures for (Re, λa) = (400, 0.2), after shedding,
the legs of the hairpin vortex retract, and in the meantime, a streamwise vortex pair
with rotation direction opposite to that of the legs appears near them, as shown
in figure 9a. In this case, the pair is much weaker than for the case of Re= 500,
and the lower Reynolds number could be the reason. In addition, a vortex structure
develops under the legs of the hairpin vortex and is connected to the hairpin vortex,
making it ring-shaped (figures 7 and 9a). The new part, however, is much weaker
than the hairpin head and therefore we still can take the entire vortex structure as
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hairpin vortex. In Stage One, with the migration direction of the sphere reversed, the
orientation of the hairpin vortex is also reversed. It is observed that the impact of
the sphere on the wall results in intense shedding of the entire vortex sheet from the
sphere, unlike the one-side shedding of the hairpin vortex. The change in the sphere
migration direction and the rapid change in the sphere rotation mentioned earlier
during the impact process are expected to be responsible for this kind of shedding.
Although the shedding of the vortex sheet can affect the rotation of the sphere,
we conjecture that the rapid change in the sphere rotation is mainly caused by the
wall effect. The vortex shed during an impact cannot develop into a hairpin vortex
(figure 9b), and the structure formed may differ for different impacts. In Stage Two,
although the impact of the sphere on the wall is along a curved line (figure 2), its
effect on the wake structure is almost as strong as in Stage One, in the sense that
the wake structures shed during the impact period typically form into streamwise
vortex structures and otherwise form into hairpin vortices (figure 9c). Due to the
spiral motion and three-dimensional rotation of the sphere, all structures in Stage
Two appear to be rotating.

3.2. Migration of a sphere in the Poiseuille flow

We are concerned with the motion of a slightly heavier sphere in a vertical tube filled
with fluid moving upwards (upflow) and downwards (downflow), respectively. Unlike
the sedimentation case above, the spheres always move in a plane in the present
case because of small slip Reynolds numbers. Therefore, we use the radial position r

to represent the lateral position of the sphere. The initial translational and angular
velocities of the sphere are set to be zero.
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3.2.1. Convergence test

Our previous numerical experiments on the DLM method showed that its accuracy
is relatively insensitive to the spatial resolution of the mesh, but the temporal
convergence rate is relatively poor due to the use of the operator-splitting technique.
In order to choose a reasonable value for the time step, a convergence test with
different time steps was conducted for the migration rate of the sphere released from
r0 = 0.2 in upflow at Ret = 100, λf = 0.0001, λa = 0.25 and ρr = 1.001. The results
are shown in figure 10, from which we can see that the time step of 0.01 provides
an essentially converged solution, particularly for the prediction of the equilibrium
position, although a completely converged migration rate has not been achieved even
at time step of 0.002. The migration rate calculated with the collocation element
method (CEM) increases slightly with decreasing time step and is a little lower than
that with the collocation point method (CPM) at the same time step value. The CE
method and the time step of 0.01 are used for the following calculations.

3.2.2. Role of the density ratio

According to the theory of dimensional analysis, there are three dimensionless
control parameters such as (ρr, Re, λa) for the sedimentation of a sphere in a tube
and four parameters such as (Ret , λa, λf , ρr ) for the motion of a sphere in a circular
Poiseuille flow, respectively. However, the steady solution is independent of ρr since
ρr appears only in the unsteady terms of equation (2.1), recalling that Fr defined in all
cases contains the term 1/(ρr −1). Moreover, the migration rate of a more dense sphere
in a Poiseuille flow is found to be relatively insensitive to ρr, as shown in figure 11(b).
Therefore, we only discuss the effects of Ret , λa and λf on the motion of a slightly more
dense sphere in Poiseuille flow, as Jeffrey & Pearson (1965) did for their experimental
work. Note that Re and λf can reflect the effects of the density differences.

Equations (2.7)–(2.8) cannot handle the situation where the particle is neutrally
buoyant. This difficulty has been overcome by Pan & Glowinski (2002) by modifying
the original computational scheme. Another simple method is to take the numerical
solution for a very small density difference as an approximation for the neutrally
buoyant case. In fact, one is unlikely to encounter particles which are precisely
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Figure 12. Radial velocities for neutrally buoyant spheres released from different radial
positions in Poiseuille flow. Ret = 100, λa = 0.25.

neutrally buoyant in practical problems. Figure 11 shows that the migration rates
for the spheres moving upwards and downwards respectively at λf =0.0001 and
ρr = 1.001 are in perfect agreement, indicating that the sphere at the above parameter
values is effectively neutrally buoyant. We will use λf = 0.0001 and ρr =1.001 to
investigate the motion of spheres in the neutrally buoyant case and ρr = 1.01 in the
non-neutrally buoyant case, respectively. In the experiments of Jeffrey & Pearson
(1965), the density differences in the non-neutrally buoyant case varied from 0.9% to
2.3%, as mentioned by Brenner (1966).

3.2.3. Migration rate in the neutrally buoyant case

Figure 12 shows the radial velocities for neutrally buoyant spheres released from
different radial positions at Ret = 100 and λa = 0.25. We can see that all velocities
will eventually converge to a unique velocity profile, which is independent of the
initial conditions of the spheres. For any sphere released from a position between the
tube axis and the equilibrium position, the initial overshoot of the radial velocity is
observed. A sphere released from a position closer to the wall than the equilibrium



80 Z. Yu, N. Phan-Thien and R. I. Tanner

V
r/

(R
e t

)1/
2 λ

a2

–0.01

–0.02

–0.03

0

0.01

0.02

0.03

Ret = 20, λa = 0.25

40,         0.25

60,         0.25

100,       0.25

100,       0.2

60,        0.3

60,        0.125

0.26r (0.54–r)

0.1 0.2 0.3 0.4
r

0.5 0.6 0.7 0.8

Figure 13. Radial velocities plotted as Vr/
√

Retλ
2
a vs. radial position for the neutrally

buoyant case in Poiseuille flow.

position initially drifts outward and its radial velocity approaches a unique velocity
profile without any overshoot. These transient phenomena are dependent on Ret and
λa: for example, the overshoot is stronger at Ret = 200 and λa = 0.25 (figure 14) and
appears to vanish at Ret = 60 and λa = 0.125. We are not interested in the transient
behaviour of the sphere, but in the subsequent stage in which the radial velocity of
the sphere becomes independent of its initial conditions.

The shape of velocity profile shown in figure 12 resembles the one observed in experi-
ments: r(r∗ − r), where r∗ denotes the equilibrium position (e.g. Segré & Silberberg
1962). The numerical velocity profile for r < r∗(about 0.55) is not symmetric about
r∗/2, and the maximum velocity occurs for r larger than r∗/2.

Figure 13 plots the radial velocities at Ret in the range of 20–100 and λa = 0.2–0.3.
Clearly, the equilibrium position is closer to the wall at higher Ret and lower λa,

consistent with the observations of Karnis et al. (1966) who found that the equilibrium
position was shifted closer to the tube axis as λa increased in their experiments at
Ret � 1.1 and was smaller than those reported by others (Segré & Silberberg 1962;
Oliver 1962; Jeffrey & Pearson 1965) at larger Ret and the same λa . Nevertheless,
there exist Ret and λa regimes in which the equilibrium position is insensitive to Ret

or λa. For example, at λa = 0.25, the equilibrium position is not sensitive to Ret as it
increases up to 150, as shown in figure 14.

Much attention has been paid to determining the exponents Ret and λa appearing
in the expression for the migration rate. Karnis et al. (1966) claimed that the exponent
on λa depends on the value of λa because they noticed that the exponent is 4 as
λa → 0 (Rubinow & Keller 1961), equals on approximately 3 at small λa from both
theory (Cox & Brenner 1966) and experimental results at λa =0.028–0.153 (Segré &
Silberberg 1962), and decreases to 2 at λa =0.25–0.305 from their own experiment
results. In all the theories and experiments mentioned above, the exponent on Ret

is unity. However, Jeffrey & Pearson (1965) found that their radial velocities at
Ret =11.2–76.8 and λa = 0.046–0.089 were better correlated with (Ret )

1/2λ2
a than with
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Figure 14. Radial velocities for neutrally buoyant spheres in Poiseuille flow at high tube
Reynolds numbers and λa = 0.25, showing that the migration rate may decrease with increasing
Ret .

Retλ
2.84
a , which was presented by Segré & Silberberg for Ret =2–30 and λa = 0.028–

0.153. Jeffrey & Pearson (1964) gave the radial velocity as

Vr = 0.35(Ret )
1/2λ2

ar(r
∗ − r), (3.2)

whereas Segré & Silberberg (1962) gave

Vr = 0.17Retλ
2.84
a r(r∗ − r). (3.3)

Jeffrey & Pearson (1964) reworked the original data of Segré & Silberberg (1962)
and showed that their data could equally well be represented by an equation that
is same as equation (3.2) but with coefficient 0.093 with roughly the same degree of
precision as equation (3.3) (see also Brenner 1966). Figure 13 shows that

Vr = 0.26(Ret )
1/2λ2

ar(0.54 − r) (3.4)

can represent well our radial velocities for the parameter range covered.
At a fixed λa, there exists a value of the exponent on Ret that can optimally

correlate the data at two different Ret , although perfect correlation is not possible
due to different velocity profile shapes at different parameter values. The optimal
exponent can be taken as an average one for that Ret interval and if that interval
is small enough, then it represents the exponent at that Ret . If we highlight the
correlation at the radial position of about 0.3, figure 13 reveals that the exponent of
1/2 is too small for Ret = 20–40, good for Ret = 40–60 and too large for Ret = 60–100
at λa = 0.25. The exponent even becomes negative when Ret exceeds 150, as indicated
in figure 14. Similarly, figure 13 shows that the exponent of 2 in λa is too large for both
λa = 0.2–0.25 at Ret =100 and λa = 0.25–0.3 at Ret = 60, and appears to be good for
λa = 0.3–0.125 at Ret = 60. Calculations further reveal that the exponent of about 1.5
is good for λa = 0.2–0.3. Therefore, from our results, the exponents on Ret decrease
with increasing Ret , and the exponent for λa decreases with increasing λa. In addition,
it seems that the exponent on λa decreases with increasing Ret , taking into account
the fact that Karnis et al. (1966) observed the exponent of 2 at λa = 0.25–0.305 and
Ret � 1.1, as mentioned earlier, and is about 1.5 at high Ret according to our results.
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Figure 15. Radial velocities for more dense spheres released from r0 = 0.4 at different λf .
Ret = 100, λa = 0.25.

3.2.4. Migration rate in the non-neutrally buoyant case

When the sphere is not neutrally buoyant, a general conclusion is that a leading
one migrates towards the tube wall and a lagging one migrates towards the tube axis.
Nevertheless, strictly speaking, the stable equilibrium position for a leading sphere is
just closer to the wall than that for a corresponding neutrally buoyant sphere, and the
sphere would migrate inward if released from a position near the wall, as observed by
Karnis et al. (1966). In addition, it is conceivable that a very small density difference
will not lead to a significant departure of the equilibrium position from the one in
the corresponding neutrally buoyant system. Figure 15 shows the radial velocities of
a denser sphere released from r0 = 0.4 at different λf , Ret = 100 and λa =0.25. The
spheres at λf = 0.01 are almost neutrally buoyant. In upflow, r∗ shifts closer to the tube
axis with increasing λf , and the sphere approaches the tube axis with overshoot as λf

increases up to 0.5, a phenomenon that was first observed by Denson et al. (1966). In
downflow, r∗ shifts closer to the wall with increasing λf till λf reaches a critical value
where the extreme position is attained, and then the equilibrium position begins to
shift towards the tube axis as λf increases. According to figure 15, the critical λf and
the extreme position are 0.8 and 0.68, respectively. Qualitatively the same results have
been reported by Feng et al. (1994b), Huang et al. (1997) and Yu et al. (2002a) for
a circular particle in a plane Poiseuille flow. Nevertheless, a leading circular particle
at a moderately large density ratio (equivalent to λf here) was observed to approach
the channel centreline, whereas figure 15 shows that an equilibrium position in the
vicinity of the tube axis is much more difficult, if possible, for a leading sphere to
reach, and r∗ of less than 0.3 was not observed by us even at λf =5. This may explain
why the equilibrium position in the vicinity of the tube axis for a leading sphere in
Poiseuille flow has never been reported in the experimental works.

As shown in figure 15, the migration rates in the non-neutrally buoyant system are
much higher than in the neutrally buoyant system, allowing us to examine them at
smaller λa . The radial velocities for denser spheres in downflow and in upflow at
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Figure 16. Radial velocities plotted as Vr/
√

Ref vs. radial position for more dense spheres
in downflow. The experimental data are from Jeffrey & Pearson (1965).

λa = 0.09–0.125 are depicted in figure 16 and figure 17, respectively. The shape of the
velocity profiles for denser spheres in downflow bears a resemblance to that in the neu-
trally buoyant system. From figure 16, the equilibrium position shifts closer to the
wall as λa decreases, Ret increases, or λf increases. Using the same method as des-
cribed earlier for determining the optimal exponents in the neutrally buoyant case,
Vr/(λ

1/2
a Re1/2

t λ
1/2
f ), i.e. Vr/Re1/2

f is found to provide a good correlation of the radial
velocities at r =0.5–0.6 and (Ret , λf , λa) = (100, 0.1, 0.125), (100, 0.2, 0.125), (50, 0.1,

0.125) and (100, 0.1, 0.09). It is encouraging to find that this scaling is same as the
one revealed by the experimental results of Jeffrey & Pearson (1965) and can account
well for the case of (Ret , λf , λa) = (89.8, 0.0674, 0.09). Moreover, our numerical results
are in quantitative agreement with their experimental data, as shown in figure 16.
The radial velocities at Ret = 100, λa = 0.25 and λf = 0.1–0.8 for denser spheres in

downflow given in figure 15 can also be well-correlated by using Vr/λ
1/2
f .

From figure 17, the stable equilibrium position for a denser sphere in upflow is
generally the tube axis as λa decreases down to 0.125. The velocity profile as a linear
function of r was predicted by the theory of Rubinow & Keller (1961) and was used
by Jeffrey & Pearson (1964) for correlating their experimental data (see also Brenner
1966). However, figure 17 reveals that the magnitude of the radial velocity does not
vary quickly with r for r > 0.4 for the case of (Ret , λf , λa) = (115, 0.0527, 0.09), and
with increasing λf the velocity profile even becomes a quadratic-like function with
the peak occurring closer to the tube axis. It is understandable that Jeffrey & Pearson
(1965) chose a linear function for correlating their data, since most of their data were
located at r < 0.6, and the case of λa =0.046 was also considered for correlation, where
the velocity profile could be much different from the case of λa = 0.09. It is difficult to
determine an unambiguous velocity profile from their relatively scattered data. The
scaling Vr/λ

1.1
f Re0.4

t is obtained by considering the correlation of our radial velocities
at r =0.4–0.6 and (Ret , λf , λa) = (100, 0.1, 0.125), (100, 0.2, 0.125), (50, 0.1, 0.125) and
(100, 0.1, 0.09). It is surprising to find that λa does not play a role in the scaling.
Figure 17 shows that the radial velocity at (Ret , λf , λa) = (115, 0.0527, 0.09) is captured
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by the scaling Vr/λ
1.1
f Re0.4

t and is in quantitative agreement with the experimental
data.

3.2.5. Angular velocity and axial velocity

We inspect the behaviour of the angular and axial velocities of neutrally buoyant
spheres at (Ret , λa) = (100, 0.25), (100, 0.2) and (20, 0.25) respectively, and non-
neutrally buoyant spheres at (Ret , λf , λa) = (100, 0.1, 0.125) in upflow and downflow
respectively. The results for angular and axial velocities are shown in figures 18 and
19 respectively. For convenience, the directions of both angular velocities and axial
velocities are not considered. (Ret , λa) = (100, 0.25) is the only case in which the data
are composed of those for several particles released from different radial positions.

Jeffrey & Pearson (1965) observed that the angular velocities of neutrally buoyant
spheres were systematically smaller than the theoretically predicted one Ω = r and
the angular velocities of non-neutrally buoyant spheres were statistically around
Ω = r , irrespective of whether the spheres lead or lag the entraining fluids. Consistent
with their observations, all of our angular velocities of neutrally buoyant spheres
are smaller than Ω = r (figure 18). Our results show that the effects of Ret and
λa on the angular velocities are appreciable. At (Ret , λa) = (100, 0.25), the angular
velocity is approximately Ω =0.91r, and the data at lower Ret and λa are closer
to Ω = r, particularly for the case of (Ret , λa) = (20, 0.25) (figure 18). It is known
that the fluid inertia results in the rotation of a particle lagging the rotation of
the fluid in a simple shear flow (e.g. Ding & Aidun 2000), and our results indicate
that the ratio of the sphere rotation to the local fluid rotation in a Poiseuille flow
is approximately a constant. For a non-neutrally buoyant sphere in downflow at
(Ret , λf , λa) = (100, 0.1, 0.125), the angular velocity is slightly smaller than Ω = r . By
contrast, the angular velocity in the case of upflow is lower than Ω = r at r greater
than about 0.5 and higher than Ω = r at r less than about 0.5, as shown in figure 18.
The departure of the angular velocity from Ω = r is expected to be more significant
at higher λf , and the overshoot of the angular velocity at the tube axis is observed
in the case of (Ret , λf , λa) = (100, 0.5, 0.25), accompanied by the aforementioned
overshoots of the radial position and the radial velocity shown in figure 15.
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Figure 18. Angular velocities of the spheres in Poiseuille flow. The directions of the angular
velocities are not considered for convenience.

Two types of functions were used by Jeffrey & Pearson (1965) to fit their axial
velocities. Type I is Uz =Ur + c and type II is Uz = cUr , here Ur being the undisturbed
fluid velocity, i.e. Ur = 1 − r2, and c being a constant. In type I the slip velocity is
assumed unchanged with r , and in type II the slip velocity decreases as r increases.
The axial velocity data presented by Jeffrey & Pearson (1965) in downflow agreed
with type II, but the data in upflow were so scattered that they were unable to decide
which type was better. Our results confirm that type II is better for the downflow
case and reveal that type I is better for the upflow case, as can be seen from figure 19.
It is worth noting that Ur =1 − r2 cannot represent accurately the undisturbed fluid
velocity in our simulations, since we employ the pressure-gradient-invariant approach
and a slight change of the flow flux due to the presence of the sphere does exist,
which becomes more pronounced as λf or the simulation duration increases. As a
result, spheres released from different radial positions for a certain set of parameters
have their own axial velocity profiles; a unique and common velocity profile cannot
be obtained, as is shown in figure 19 from which we can see that for the case of
(Ret , λa) = (100, 0.25) a combination of three sections of data demarcated by r ≈ 0.3
and r ≈ 0.55 cannot form a smooth curve. Taking this into account, the axial velocities
in upflow and downflow in a system with fixed flow flux would even agree better
with their corresponding types than shown in figure 19, respectively. Figures 12 and
18 show that the radial velocities and the angular velocities are much less insensitive
to the small change of the flow flux than the axial velocities, since the curves can be
connected smoothly.

Figure 19 shows that the axial velocities in the neutrally buoyant case are in better
agreement with type I than type II, and the slip velocity is smaller at lower λa,which
is in qualitative agreement with equation (2.25). The effect of Ret on the axial velocity
is found to be small, since the data at (Ret , λa) = (100, 0.25) and (20, 0.25) are close
to each other, the latter not being plotted in figure 19 for clarity.
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3.2.6. Lift force

We have shown that the Magnus effect plays an important role in the lateral motion
of a sphere in the sedimentation case. The Magnus effect is related to the rotation of
a particle. It has been recognized that the rotation of a fluid can also provide a lift
force on a particle known as the Saffman force. Saffman (1965) analysed the lift force
on a sphere in a linear unbounded shear flow with the assumptions that Reslip � 1,

Resh � 1, and ε = Reslip/
√

Resh � 1, here Reslip being the slip Reynolds number defined
in (2.24), and Resh the shear Reynolds number defined by Resh = ρf γ̇ (2a)2/η where γ̇

is the shear rate. He derived the following expression:

Fsa1 = 6.46a2(ηρf )1/2|ωf |−1/2(ωf × U s), (3.5)

where U s is the slip velocity of the sphere with respect to the fluid, and ωf represents
the vorticity (rotation) of the fluid ∇ × u, u being the fluid velocity; for a shear flow,
|ωf | is actually the shear rate γ̇ . The results of Saffman (1965) further revealed that
the effect of the sphere rotation is not important to the lift force unless the angular
velocity of the sphere is greater than the shear rate. MacLaughlin (1991) extended
Saffman’s analysis to allow the slip Reynolds number to exceed unity and found that
the lift force decreases with increasing ε. From the results of MacLaughlin (1991) for
0.05 � ε � 10, Mei (1992) obtained a modified lift force Fsa2 in the following form:

Fsa2

Fsa1

≈ 0.3

{
1 + tanh

[
2.5 log10

(
1

ε
+ 0.191

)]}{
0.667 + tanh

[
6

(
1

ε
− 0.32

)]}
. (3.6)

Fsa2 was found in very good agreement with the numerical results of Kurose & Komori
(1999) for Reslip < 5.

The Saffman force (3.5) or (3.6) is derived from a linear unbounded shear flow,
and consequently is not valid for evaluating the lift force on a sphere in a general
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shear flow. For example, it cannot explain why a neutrally buoyant sphere migrates to
the Segré–Silberberg equilibrium position in Poiseuille flow and to the centreplane in
Couette flow, since the Saffman force based on the local shear rate is always directed
toward the high-velocity side of the sphere due to the fact that a neutrally buoyant
particle always lags the fluid. The results of the perturbation theory (e.g. Ho &
Leal 1974) revealed that the curvature of the velocity profile and the wall effect
are important to the aforementioned sphere migrations. However, the Saffman effect
should be important to the one-way migration of a non-neutrally buoyant sphere,
since the Saffman force and the migration have the same directions in both cases. In
the following, we attempt to make a quantitative comparison between the Saffman
force and the lift force on a sphere.

Consider the case of (Ret , λf , λa) = (100, 0.1, 0.125). In the Poiseuille flow case,
Reslip = 2|U s |λaRet , Resh = γ̇Res = 4λ2

aRet γ̇ , and ε =
√

Ret |U s |/
√

γ̇ , U s and γ̇ being the
dimensionless slip velocity and shear rate. ‖U s‖ is determined from our computations
(figure 19) and γ̇ = 2r. For the present problem, typically, |U s | =0.1 and γ̇ = 1, and
we then obtain Reslip =2.5, Resh = 6.25, and ε =1, hence, the Saffman force should
be calculated with the second formulation (3.6). The dimensionless form of (3.5) is

Fsa1 =
6.46λ2

a√
Ret

|ωf |−1/2(ωf × U s). (3.7)

The scale of a force is ρf U 2
mR2. For convenience, the dimensionless quantities ap-

pearing in this section are written in the same form as their dimensional counterparts.
A lift force drives a sphere to migrate radially, and at the same time the sphere

undergo a drag due to its migration; therefore the migration rate is determined from
the net force, i.e.

M
dV r

dt
= Ft = Fl − Fd, (3.8)

where Ft , Fl and Fd denote the total radial force, the lift force and the radial drag
force, respectively. Considering that the Stokes drag law is used to calculate the drag
force in the perturbation theory (e.g. see Asmolov 1999), we here use the standard
drag law to compute the drag force, i.e.

Fd = 6πaηf V r , (3.9)

where f is the drag factor arising from the fluid inertial effect. In other words, the
drag force is calculated with the point-particle model. It should be noted that the
drag force evaluated this way is not an accurate one for the Poiseuille flow studied,
since the shear and wall effects are not considered in the standard drag law. But the
error is expected to be insignificant except in the vicinity of the wall.

Since the radial velocities are smaller by a factor of one order in magnitude than
the axial slip velocities (figures 16, 17 and 19), we take the axial slip velocities as
the total slip velocities for evaluating the particle Reynolds number. Since the typical
Reslip is 2.5 for the present problem, we choose f = (1 + 3

16
Reslip), which is valid for

Reslip up to 5.0 (e.g. see Crowe, Sommerfeld & Tsuji 1998). The dimensionless form
of the particle inertial force (i.e. the total radial force) is

Ft =
4

3
πρrλ

3
a

dV r

dt
,
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and that of the drag force is

Fd =
6πλaf V r

Ret

.

The ratio of the former to the latter in magnitude is

2

9

ρrλ
2
aRet

f

dVr

dr
.

The coefficient 2
9
ρrλ

2
aRet /f is actually Stokes number characterizing the particle inertia

or the response time of the particle to the flow, and its value is around 0.24 if we
consider ρr = 1.01, λa = 0.125, Ret =100 and Reslip = 2.5. dVr/dr can be estimated
from figures 16 and 17, and we find that the particle inertial force is almost two orders
in magnitude smaller than the drag force. As a result, the lift force approximately
equals the drag force, i.e.

Fl =
6πλaf V r

Ret

.

The small particle inertia explains why the radial velocities for the spheres released
from different radial positions change rapidly at initial times and then converge to a
unique velocity profile, as shown in figure 12.

The calculated Saffman and lift forces are plotted in figure 20. The lift forces are
smaller than the Saffman forces in both cases, particularly in the vicinity of the
tube wall, where, however, the differences can be reduced to some extent by the
consideration of the wall effect on the drag forces. One should not use the Saffman
formula to compute the lift force, but from the physical point of view the Saffman
effect is expected to be responsible for the one-way migration of a non-neutrally
buoyant sphere.

Next, we consider the effect of sphere rotation on the lift force. It was observed
experimentally that, for the neutrally buoyant case, the equilibrium position of a
non-rotating sphere is closer to the tube axis than that of a freely rotating sphere
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(Oliver 1962). Patankar et al. (2001a) studied numerically the lift-off of a heavier
circular particle in a horizontal two-dimensional Poiseuille flow, and found that a
non-rotating particle rises further than a freely rotating one. Figure 21 compares
the radial velocities of free-rotating and non-rotating spheres for the non-neutrally
buoyant case of (Ret , λf , λa) = (100, 0.1, 0.125) and the neutrally buoyant case of
(Ret , λa) = (100, 0.25). It is surprising to find that the suppression of the rotation
produces significantly larger additional lift forces pointing to the tube axis on the
spheres in the neutrally buoyant and more-dense-downflow cases, whereas it has
a negligible effect on the migration of the more dense sphere in upflow, although
the results for the neutrally buoyant case are in qualitative agreement with the
experiments (Oliver 1962) and the numerical results of Patankar et al. (2001a). The
Magnus effect is usually applied to the analysis of the lift force on a particle rotating
in a homogeneous flow, and Crowe et al. (1998) suggested that it can be applied to
a shear flow by replacing the angular velocity of the particle with the angular slip
velocity. But apparently it cannot explain the above observations.

We conclude that the effects of the curvature of the velocity profile, the wall and
the sphere rotation on the lift force on a sphere in a Poiseuille flow are very subtle,
depending on whether the sphere is neutrally buoyant, more dense or less dense than
the fluid, and therefore it would be difficult to establish general formulae to measure
lift forces for the point-particle model by the separate consideration of these effects.

4. Conclusions
We have presented a new computational scheme for the DLM method that is

obtained by replacing the previously used finite element method with a half-staggered
finite difference method to solve the fluid-flow sub-problem. With the new scheme, we
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have examined the sedimentation of a sphere and the radial migration of a sphere in
Poiseuille flow in a vertical tube. The main conclusions in the sedimentation case are:

(a) At high ReT where shedding of vortices takes place, a sphere takes up a spiral
trajectory that is closer to the tube wall than the tube axis.

(b) The rotation motion and the lateral motion of a sphere are highly correlated
through the Magnus effect. The Magnus force is an important, but not the sole, driving
force for the lateral motion of the sphere at relatively high Reynolds numbers.

(c) For ReT > 400, the standard vortex structures in the wake of a sphere are
composed of a loop mainly located in a plane perpendicular to the streamwise
direction and two streamwise vortex pairs. Due to the Kelvin–Helmholtz instability,
the vortex sheet rolls up and is shed into the hairpin vortex. When moving downstream,
the legs of the hairpin vortex retract and a streamwise vortex pair with rotation
opposite to that of the legs form between the loops in the meantime.

(d) At ReT around 400, the wake structures shed during the impact of the sphere
on the wall typically form into streamwise vortex structures and otherwise form into
hairpin vortices when the sphere spirals down.

The main conclusions in the Poiseuille flow case are:
(a) For the neutrally buoyant case, the equilibrium position is closer to the tube

wall at higher Ret and λa; however, there exists a critical Ret above which the
equilibrium position is insensitive to Ret for a fixed λa.

(b) For the neutrally buoyant case, the exponents on Ret decrease with increasing
Ret , and the exponent on λa decreases with increasing λa. Vr = 0.26(Ret )

1/2λ2
ar(0.54−r)

can represent well the radial velocities at Ret = 20–100 and λa = 0.2–0.3. The exponent
on Ret can be negative for large Ret .

(c) For the neutrally buoyant case, the angular velocity ratio of the sphere to the
local fluid is almost a constant. At (Ret , λa) = (100, 0.25), the angular velocity of the
sphere is approximately Ω = 0.91r, and the angular velocities at lower Ret and λa are
closer to Ω = r.

(d) For the case of a more dense sphere in downflow, the equilibrium position shifts
closer to the wall with increasing λf till the extreme position is attained, and then
the equilibrium position begins to shift towards the tube axis as λf increases, but an
equilibrium position in the vicinity of the tube axis is not observed at moderately
large λf .

(e) For the case of a more dense sphere in downflow and the parameter range of
Ret =50–100, λf = 0.1–0.2 and λa = 0.09–0.125, a scaling Vr/Re1/2

f is obtained for the
correlation of the radial velocities.

(f) For the case of a more dense sphere in downflow and at (Ret , λf , λa) = (100,
0.1, 0.125), the angular velocity is very slightly smaller than Ω = r and the slip velocity
decreases generally in the form of 1 − r2 as r increases.

(g) For the case of a more dense sphere in upflow and the parameter range of
Ret =50–100, λf = 0.1–0.2 and λa = 0.09–0.125, a scaling Vr/λ

1.1
f Re0.4

t is obtained for
the correlation of the radial velocities, whose profile is not a linear function of r.

(h) For the case of a more dense sphere in upflow and at (Ret , λf , λa) = (100,
0.1, 0.125), the angular velocity is lower than Ω = r at r greater than about 0.5 and
higher than Ω = r at r less than about 0.5, and the slip velocity remains almost
constant as the sphere migrates towards the tube axis.

(i) The Saffman force is larger than the lift force on a non-neutrally buoyant sphere,
but the effect is expected to be important to the one-way migration.

(j) The suppression of the sphere rotation produces significant large additional
lift forces pointing to the tube axis on the spheres in the neutrally buoyant and
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more-dense-downflow cases, whereas it has a negligible effect on the migration of the
more-dense sphere in upflow.
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